SOME _REPLACEMENT - TIMES DISTRIBUTIONS IN_TWO-COMPONENT 1/t1 .
SYSTEMS(U) MARYLAND UNNV COLLEGE PRRK DEPT OF

MANAGEMENT SCIENCES RND STATISTICS N L JDHNSON ET RL
UNCLASSIFIED DEC 82 N88814-81-K

END
ranen
1 one




.

.=

D ———
“_'e. Ye uTe

o,
v S P T AT Y

- ™

-,

e A St 8 S e S

s N -.-

o vt
E '{""

e —
——
e ——
S——
e —

““l 1.4

1.25

I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1953-A

‘e

[

-3 -

© e

e el

(L R




TN W AT N, T, T T T T T T LT
, P —— T Y. - RN TN e e e e e e e e .
\ 2nas 2rer st o aeub araagtaarnACI AR REPL IS I I YA L TN -

DI e
.‘.ﬁ

,:l . Y

SOME REPLACEMENT - TIMES DISTRIBUTIONS
IN TWO-COMPONENT SYSTEMS

by
Norman L. Johnson Samuel Kotz

University of North Carolina . University of Maryland g
Chapel Hill, NC 27514 College Park, MD 20742 N
o ::
Key words and phrases: Replacement times, relevations, revealed and unre-
vealed faults, Farlie-Gumbel-Morgenstern distribu- >
tion -
"5
- _ 2
I . v
o [ > :_.
L ¥
~d AMS 1982 subject classification 62N and 62P R T rod '

ﬁ:‘: .L: : ERRE 3 & ‘\ s
. €2 o 3
= ’
— 4
83 01 17 081 ,

el e,

. e B T WAL C e PSSP W UL TV . Y g
JL- '_. '_. - . e 7w . a PPV TNRE JN..) . L4 o




v L g atoul i sl i A SRR A S - - e e .
At 4 e tnd Sas PNl Nl L P e S

e i Y e T Ty T e

o WO RN A WA d

Sy N

i
v
K
.
<
i
.

o2 2 N L BRI R

o |

varw il - ol i

._,/3 Cons /-/pr((/ here i |5

ABSTRACT

Wa system consisting of two modules, one of which cannot be
easily inspected, while the other is monitored continuously. A fault devel-
oping in the first model is called /g\/mrevealed" (U) while the one in the
second module (which is assumed to be fletected immediately) is calleq/'(ﬁ‘--

vealed' (R). It is supposed that repairs are initiated as soon as an R

is observed, but nét otherwise, Ph-i-l—l-i—ps—-(-ui-etéleeﬁen—.—ﬂeﬁxb—.‘“fww)

W“‘F‘WWd that-—-both modules-

m4luayy-gepheed -l-n:ﬁ'xis paper we allowsfor replacement of the first
module only if a U fault is found on special inspection. léxpressions are
derived for t.he joint distribution of time to fi\rst repair and time between
firs_t and second répairs. Special cases are considered in which fairly
sin;ple results are obtained by general arguments without recourse to anal-
ysis. Detailed formulas are developed for a particular parametric model.

Relationships with relevation theory are indicated. é‘
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1. Introduction

Phillips [1,2] has considered a system consisting of two modules, one
of which cannot be easily inspected, while the other is monitored contin-
uwously. A fault developing in the first module is called "unrevealved (U) -
that is, until a special inspection is carried out - while a fault in the
second module, which it is assumed will be detected immediately, is called
"revealed" (R). It is supposed that repairs are initiated as soon as an
R is observed but not otherwise. As in [2] we will further assume that re-
pairs are effected instantaneously and, if carried out, result in the re-
paired module being ''as good as new".

We will be especially concerned with the distribution of the time at
which a second (or later) repair is needed, on similar assumptions to those
of Phillips, except that we will allow for the possibility that repairs are
made only to modules with faulte. This would mean that if an R occurs, the
first module is specially inspected, and replaced only if it has a U fault.

Phillips' model is based on three random variables: X: time from repair
of R to next occurrence of R, assuming no U present. Y: time from repair
of U to next occurrence of U, assuming no R present. 2Z: time from a U fault
to an R fault. X and Y are assumed independent. Z is independent of X in
both [1] and [2], but may depend on Y in (1], though not in [2]. We will
retain this possible dependence.

Using the notation fﬁ(w) to denote the density function of a random

variable W, and

Syw) = ‘{ £, (t)dt

to denote its survival function, the density function of the first replace-
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ment time, Tl’ is ([1], equation (1))
ty

f.rl(tl) = £,(t,)S,(t)) + gsx(tl'z)fY,Z(tl'z’z)dz ¢))

(We use subscripts to denote the order of the replacement period.)

2. Distribution of time between first and second replacements

If "repair" consists of complete replacement, as in [1] and [2], then
the time 'l‘2 from first to second replacement has the same distribution as
Tl, and T1 and Tz are mutually independent. Hence the time of second re-

placement CT1+T2) is distributed simply as the convolution of two T.'s. Ex-

1
tension to later replacement times is straightforward.

The situation is different, however, if the first module is replaced
only if a U fault is found to be present on inspection after an R fault
occurs. When such a fault is not present we start the second replacement
period with a first module already aged Tl' rather than a new one. We note

in passing that the same situation arises when replacement of both modules

is automatic, when an R fault occurs, if the first module is replaced from

aging stock, with aging occurring at the same rate in storage as in service.

Relevation theory, which we have discussed in [3] and elsewhere, is appli-
cable to this situation,
1f a U fault ie present, then x2, Yz and 22 will have the same joint

distribution as X

1’ Y1 and zl; and the sets of variables (xl,Yl.Ll) and
(XZ’YZ’ZZ) will be mutually independent. If a U fault Zs not present, then
given Tl = tl' we will have

x2 distributea as XI: - density function fx(xzj;

Yz distributed as (Yl-tl\, conditional on Y1>tl: - density fqnction

fY(yzotl)/sy(tl) and survival function Sy(y2¢t1)/8y(tl);

......................
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% ZZ’ given Y2, distributed as z given YI-YZ, so that the joint density
i function of Y2 and Z2 is

- £, .(y,,2,) £ (y,+t))

- Y, 272’72 Y2 "1

. = L4

: £y (2l By, lY0 ) = = £,0,) MG (2)
. Also we have

Py(t,) = Pr(U fault present|T1=t1] = 1-f,(1))S, (1) )/£, (x)) (3)
The conditional density function of Tz, given T1=t1, is therefore

t
= o2
szlTl(tzltl) = P, (t)){£ (¢,)8, (v,)+f S, (t,-2)f y,2(t,m22)dz}

‘ol s T - - -,
VAR NS IR
yetetts et . .

+ -———T—SY(tl {fX(tZ)SY(tl*tz)"fO Sx(tz-Z)fY’Z(tZ-Z,Z) -f—y-r?—:;)- d:} (O<t2)

(4)

The joint density function of T1 and T2 is

£ (tht)) = f (t,lt) £ (t)
T T, 1772 T,IT," 20717 T
t
2
= {fx(tz)SY(t2)+fo Sx(tz-z)fy’z(tz-z,z)dz}

t .
l
. !0 sx(tl-z)fY z(tl-z,z)dz

2 f (t +t2 z)
+ {£,(r,)s (t1+t2)+fo Sy (t,-2)f y,z(t3"22) -—-———————d‘.}&(tl)
(5)
= {fx(tz)SY(t2)¢H(t2,0)}H(tl,O)
+ {£,(2,)S,(t,+t,) + H(t,, 1) (r))  (0<ty,t)) (5a)
where  H(a,b) = fg 5, (8-2)f, , (a-2,2){£, (a+b-2) /£, (a-2) }dz (6)

The overall density of T2 is
t2
sz(tz) = {fx(tz)Sy(t2)+fo Sx(tz-z)fy’z(tz-z,z)dz}

t
L] l - -
o To'sx(t, 2)fy 5 (t)-2,2)dzdt,

- )
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fY(t1+t2-z)

t
2
+ £, (t)) [ofy (£))S (v ot )dt «fTF, (1) f o Sx (2 Ey (852 20— oy ¢
(7

t
1 . .
We note that f: IO Sx(tl-z)fy,z(tl-z,z)dzdt1 is simply the overall proba-
bility that a U fault is present at the first replacement time, that is,

Pr[X>Y], while f; £,(t))S, (t,+t,) = Pr[v>Xst,].

3. Some special cases

Before proceeding to study cases in which the joint distribution of
X, Y and Z is completely specified, we first take note of a few results of
broader character which can be derived by general reasoning, without recourse
to analysis,

Intuitively one might feel that 1 - PU(tl) = SY(tl), since the proba-
bility of no U fault occurring up to time t, is SY(tl)’ but this does not
take into account the differential effect of the times of occurrence of R
faults according as they are, or are not preceded by U faults, If the
time to an R fault (Tlax if XsY; = Y+Z if Y<X) were independent of Y, then
le(tl) = fx(tl) and so, we would have 1 - PU(tl) = SY(tl)' It is, however,
clear that this is not usually the case; indeed independence of Z and Y
does not imply independence of Tl and Y; in fact it usually implies depen-
dence. .

If replacements of first modules are from aging stocks, with aging being
the same whether in storage or in service, (""'relevated" using the terminology
of [37]), then it makes no difference (so far as distributions of T 's are
concerned) whether or not a first module is replaced when there is no U fault,
Thisvis because after the repair we have, in either case, a first module of
age tl; and this result is valid whether replacement of second modules is

from aging stocks or not,
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tf 1f the lifetime distribution of the first module (that is, of Y) j
!l is exponential, then (xl’Yl’zl) and (XZ’YZ’ZZ) and so T1 and Tz will be f

mutually independent, whether replacement of the first module is from aging f

stocks or not (or is, indeed, performed or not when no U is present). This

follows from the lack of memory (or old-as-good-as-new) property (see

et —L

e.g. [4]) of the exponential distribution. If replacement of the second

module is from aging stock, this may no longer be the case, though it is
| so if the distributions of X and Y are both exponential, whatever the dis-
tribution of Z, provided this depends only on time (Y) since replacement,

and not on actual age,

If the joint distribution of Y and Z is of the Farlie-Gumbel-Morgenstern

form, with

fy 20s2) = £ ONF () [1+ad28, (1)-1H25,(2)-13] (la[<1)  (8)

I B FTIORNORER I

(see, e.g., [5]), then in (5a)

a
H(a,b) = [ Sx(a-z)fy(a+b-z)fz(z)[1+a{2$Y(a-z)-1}{ZSZ(z)-l}]d:
i}

(9)

When we come to consider explicit forms for the distribution functionms,

R ITN b. CONARY

b YO

numerical evaluation of the distributions of Tl and T2 is straightforward,

but for elegant analytical results there are technical difficulties, cen-

LR |

tering mainly on the form of SY(y) and in particular of the ratio
fY(t1+t2-z)/fY(t2-z), and also on the form of Sz(z). Assuming exponen-
tial forms does, as we have seen, give simple results, but these are per-
haps too simple to make good examples., We will take, as an illustrative

special case, X, Y and Z to have density functions

.

- -2 -1
ei t exp(-tei ) (0<ei,t)




i=1,2,3 respectively, with the joint density function of Y and Z of the
l Farlie-Gumbel-Morgenstern form (8). We have

-xel

1 °t/8,

£, (0 0t,-2) /£ (ty-2) = (t+1,-2) (t,-2) e S, (x) = (1+x8])e

4 Y0 - -2/8
| Sy0) = (+y83e 25 8,(2) = (a3 e O,

"

.
«

~

I

i

.

Now from (5)

-2 -1 -1 -1
le,Tz(tl’tZ) = [e1 t2(1+62 tz) eXp{-t2(61 +ez )+H(t2,0)] H(tl,O) |
-t./8
1’71 (10)
-1 -1
2 %)

. [912t2{1+e;1(tl+t2)}exp{-tzce;1+e;1)-tle;1}+uct2,tl)]e;2t1e

-2 -1 -1, .-1.8 -1 207"+
with H(a,b) = (6,0,) “ exp{-a(6] +6,7)-b6_"}[{1+(a-2)6] }z(a+b-z)e
273 ) | 2 2 0 )|

- (a-2)/6

-2/8
[1+a-2a{(1+3639e

+( 2/93) e
1
dz (11)

2

X

!

-1 -
-(a-z)e2 z63

+

a-z
4a(1+—e—2—)(z/63) e

Although (11) is complicated, it involves only integrals of forn

j: z%xp(Bz)dz = B'a'ljgewae'wdw and so can be expressed in terms of

elementary functions.

B AR S N T
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Similar analyses can be performed for other choices of distribution

for X, Y and Z (e.g. Weibull) but they lead to even more complicated ex-

Al

pressions than (11). We hope to provide some detailed analyses of such

cases, in later work, and also to introduce cost functions, on the basis

o

of which replacement strategies can be compared.
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